Percutaneous SI screw fixation under fluoroscopic control is an effective and widely used method for the stabilization of the posterior pelvic ring. Screw misplacement with consecutive nerve lesions, mainly of the nerve root L5, is a major complication of this technique [6, 16–20]. Interindividual variations in the morphology of the upper sacrum, the so-called sacral dysmorphism, particularly account for these findings. Sacral dysmorphism has been described by several authors. Most of these studies, however, are anatomical studies describing the morphological variance of the upper sacrum without assessing their relevance for percutaneous SI screw fixation [26–28]. Other authors assess the sacral morphology considering its clinical relevance for SI screw fixation. Carlson, for example, described the three-dimensional shape of the corridor for SI screw fixation (vestibule concept) in a CT-based study, [23], while Mendel showed a CT-based 3D model of secure bone corridors (safe zones) and optimal trajectories for sacroiliac screws [24]. The authors, additionally, provided recommendations for the angulation of SI screws in different planes. These recommendations, however, differ significantly between the authors, which, obviously, is not surprising given the variations in sacral morphology. The angle in a caudocranial direction (outlet view), for example, ranged from 2° to 18°, while the angle in a posteroanterior direction (inlet view) ranged from 2° to 16° [23, 24]. In conclusion, a ‘‘one-size-fits-all’’ approach to percutaneous SI screw fixation is not feasible given the diversity of the sacral morphology.
To avoid screw misplacement in percutaneous SI screw fixation, CT guided and navigated procedures have been developed [9–12, 14, 15, 29]. These procedures allow for secure screw placement even in the presence of narrow osseous corridors and sacral dysmorphia, which was demonstrated in the above-mentioned studies. Besides a higher radiation exposure [14], the major drawback of these techniques, however, is their limited availability beyond trauma centers. Accordingly, SI screw fixation under fluoroscopic control is and will continue to be an important technique for minimally invasive stabilization of the posterior pelvic ring.
SI screw fixation under fluoroscopic control not only relies on sound intra-operative imaging, but also on the surgeon´s ability to interpret the two-dimensional images in a 3D context. Several authors have provided different approaches for the interpretation of these images in an inlet, outlet, and lateral views [4, 30–32]. Routt, for example, reported that abnormal morphological patterns of the upper sacrum could be easily identified using mainly the outlet view and the lateral view [30]. We agree that the outlet view allows for secure screw placement above the first sacral foramina in S1 even in the presence of dysmorphic foramina. The lateral view allows for the assessment of the upper, lower, and posterior borders of the osseous corridor. However, we disagree that the lateral view is valuable for the assessment of the anterior border of the corridor. First, the anterior border is not strict parallel to the projection in the lateral view. Our data show that the anterior border may be divergent (ascending type), horizontal, or convergent (descending type) relative to the posterior border, which highly influences its radiological appearance in the lateral view. Second, indentations of the anterior cortical border of the corridor (notches) may not be assessable in a view axial to this border. The techniques of corridor assessment described by Mendel [31] and Noojin [32] neither assess the ‘‘notch’’ problem as well.
Miller [33] summarized the three key points of fluoroscopically controlled SI screw fixation in the presence of sacral dysmorphism in a recent review article as follows: First, dysmorphic sacral neuroforamina are assessed in the outlet view. Second, the posterior wall and variances in the sacral alar slope are assessed in the lateral view. Third, notches of the anterior cortex are assessed in the inlet view. According to our own experience, however, the inlet view may not be appropriate to reliably detect notches of the anterior cortex in all cases. The inlet view is a two-dimensional projection with an overlap of the anterior cortex of the vertebral bodies S1 and S2. Our data, however, show that the anterior cortex of the upper sacrum is not a flat surface in a three-dimensional space, which would result in a single line in a two-dimensional projection. The corridor type, for example, changes very frequently within the vertebral body of S1 (Table 1). In addition, the presence or absence of a notch is not detectable in an inlet view in the majority of cases and further limits the assessment of the anterior cortex of the upper sacrum in this view.
The fluoroscopic control during SI screw fixation is adequate when drilling in a strict transverse direction. Transverse corridors of adequate width, however, are present in a minority of patients only. Ascending corridors with a notch have a very narrow intraosseous corridor in a transverse direction. These types require a more posterior entry point (even posterior to the posterior wall of S1 in a lateral view) and a more ascending drilling direction, which increases the risk of nerve lesions particularly in the additional presence of a notch. The aim of our study, therefore, was to develop a simple method for the preoperative assessment of the corridor type and the presence of a notch with widely available tools as shown above. We consider horizontal and descending corridor types without a notch to be feasible for fluoroscopically controlled SI screw fixation, while ascending types with notch bear a higher risk of iatrogenic nerve lesions. In these cases, we recommend navigated SI screw fixation. One interesting finding of our study was the high frequency of ascending corridors in the upper quartile of S1 with a much lower frequency in the middle quartile and lower quartile of S1. An ascending corridor in the upper quartile is mainly determined by the inclusion of the sacral promontory in the corridor analysis. In the upper quartile, there was an additional notch in 69 % of the cases as well. Accordingly, we consider a screw trajectory to the promontory to be associated with a higher risk of L5 nerve root lesions than more flat screw trajectories.
One limitation of our study has to be noted. It was our goal to classify the morphology of the upper sacrum based on the risk of iatrogenic nerve lesions during percutaneous SI screw fixation. Accordingly, we focused on the corridor morphology in the inlet view and defined different inlet corridor types as well as the presence of a notch. For a safe overall screw placement additional parameters, such as the absolute diameter of the corridor in mm and corridors in the outlet view are relevant as well. The assessment of these parameters, however, was not the goal of this study.
In conclusion, our concept obviously is not a “one-size-fits-all’’ concept neither. It aims at three goals: (a) to increase the awareness of the surgeon for the problem of sacral dysmorphism, (b) to emphasize the importance of a preoperative assessment of the osseous corridor, and (c) to provide a simple method for the preoperative assessment with widely available tools.